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Apparent superluminal propagation of a laser pulse in a dispersive medium
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The distortion of a laser pulse propagating in a dispersive gain/absorptive medium is analyzed. The rela-
tionship between the distortion of the pulse and superluminal propagation is discussed. We present an analyti-
cal approach based on the laser envelope equation that is readily applicable to arbitrary input pulse shapes. This
analysis is used to interpret recent experiments that claim to have observed distortionless superluminal laser
pulse propagation.
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I. INTRODUCTION 0
P(z,t):(zw)—mf dr x(1)E(zt—1),

It is well known that in regions of anomalous dispersion N
the group velocity of an electromagnetl_c pul_se can be abno'iivhere)( is the susceptibility. Defining the Fourier transform
mal, i.e., greater thae (the speed of light in vacuupor ¢ o quantityQ(z,t) as
negative[1,2]. While it has been claimed that group velocity ’
“is just not a useful concept” in regions of strong anomalous R o
dispersion2], others have shown that for a Gaussian pulse Q(z,w)=(2w)*1’2j Q(z,t)expiwt)dt,
the group velocity represents the velocity of the peak of the o
pulse even when it is abnormg@-5]. This apparent super- _ L :
luminal propagation results from a pulse reshaping effect b);he Fourier transfoArms of the pqlanzatlon and the electric
which a dispersive medium preferentially amplifies the frontfield are related byP(z,w)= x(w)E(z,»). The medium is
or absorbs the back of the pulse. This effect has been dé&haracterized by a frequency-dependent complex refractive
scribed theoretically using a Fourier transform method. Foindexn(w) = y1+4my(w). We assume that the deviation of
analytical tractability a Gaussian pulse was used and the ré¢he refractive index from unity, i.eAn(w)=n(w)—1, is
fractive index expanded to keep only the lowest-order grougmall and neglect reflections of the laser pulse from the me-
velocity dispersiofGVD) term[3-5]. dium boundaries at=0 andz=L. To determine the evolu-

The analysis presented here is based on an envelope equi@n of the pulse envelope we represent the laser electric field
tion that describes the propagation of arbitrary pulse shapeas E(z,t)=3A(z,t)exfi(kez— wgt)]+c.c., whereA(z,t) is
and can in principle include dispersive effects analytically tothe slowly varying, complex pulse envelopé(wg)
all orders[6]. For a pulse with a well-defined leading edge, = won(wy)/c is the complex wave numbesy, is the carrier
we show that the lowest-order effect in a gain medium is thafrequency, and c.c. denotes the complex conjugate. The field
the pulse propagates with velocityand undergoes a distor- is polarized in the transverse direction and propagates in the
tion in which the front of the pulse is amplified more than thez direction. Sinceky is complex, the factor exp-Im(kg)z]
back, i.e. differential gain This leads to apparent superlumi- represents an overall amplification/absorption of the pulse at
nal pulse propagation in which the peak of the pulse travel$érequencyw, and does not cause pulse distortion. The actual
faster thanc. However, the velocity of the leading edge of laser pulse amplitude iA(z,t)|exd —Im(kg)z].
the pulse does not exceed A related effect can also take An envelope equation is obtained by substituting the rep-

place in an absorptive medium. resentation for the laser electric field into the wave equation
and performing a spectral analy$i®—8§|] that involves ex-
II. ANALYTICAL MODEL panding the refractive index about the carrier frequengy

The following analysis considers a laser pulse propagat-
ing through a general dispersive medium as illustrated in Fig.
1. The laser electric fiel& is described by the wave equa-

<

The polarization fieldP is related to the electric field by el

gain medium

laser pulse envelope

*Present address: LET Corp., 4431 MacArthur Blvd., Washing-
ton, D.C. 20007.

"Present address: Icarus Research, Inc., P.O. Box 30780, Be- FIG. 1. Schematic showing a long laser pulse entering a gain
thesda, MD 20824-0780. medium.
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The envelope equation describing the evolution of the laseexample, if the lowest-order GVD terry,»?z/2 is neglected
pulse, including dispersive effects to all orders, is given by in Eq. (3), the laser envelope is given by

g 19 L ) )
=27 c E) A(z,t) A(zt)= Nz f_wdvA(O,v)exq— iv(t—2/c)]exp(ix;v2).
{5(,3— wlc)] 9 Az "
= |22 TP T Az,
e & Equation(4) can be integrated exactly to give
i [ & im™[amp?] 9™ A(z,t)=A(0t—2/vy), (5)
’ E[T*Em— Fam | g A,

where the quantity 4=[d(wn/c)/dw] *=c/(1+ck;) de-

(1) fines the group velocity of the pulse. The exact solution,
] given by Eq.(5), to the approximate envelope equation can
where B(w)=wn(w)/c is the frequency-dependent wave clearly lead to unphysical results since it implies that, to the
number,| Jo denotes that the quantity in brackets is to bejowest order of approximation, the entire pulse propagates
evaluated ab = w,, and the laser pulse envelope at the inputyndistorted with velocityv,. This interpretation is due to
to the amplifying mediumA(z=04), is assumed given. If impjicitly retaining terms beyond the order of the approxi-
the spectral width of the pulse is sufficiently narrow, it is mation through the exponential factor. For example, neglect-
valid to limit the analysis to terms of order/dt?, i.e., ing x, terms in the exponent of Ed4) is equivalent to
|OWESt-Order GVD effects. W|th th|S approximation, togetherkeeping terms proportiona' tOKg_VZ)Z while neg|ecting

with neglecting the small term proportional 8/6z°, EQ.  terms proportional toc,»2z that are of the same order.

(1) reduces to In a dispersive gain/absorptive mediumy, can be abnor-
PR PR mal. For examplg, if—1<c;<1<0,.the. pu!se velocity ex-
(_+ - _) A(zt)=— ( Kim + = Ko—s +---)A(z,t), ceedsc. A negative group velocity implies superluminal
dz  c ot ot 2 %ot propagation if one considers the pulse delay tj@@0]. The

) delay time,AT=L/vy—L/c, is defined as the difference in
the transit times of an arbitrary point on the pulse in the
where k=[dk(w)ldw'ly, 1=12,..., and «(w) : : : . ; . i
— wAn(w)/c. This approximation, which requires both a dispersive gain/absorptive medium and in vacuum. A nega

- . ; . < tive delay time implies superluminal propagation. While it is
sufficiently short interaction length and long pulse duration, Y b b propag

is sufficient for the present purpose. For pulse propagation i hysically possible for some points on the pulse o have
vacuumAn(w) =0 so that the right-hand Sid&HS) of Eq. egative delay times, e.g., the peak of the pulse, this should

. . X not be interpreted as superluminal propagation ofehtre
(2) vanishes and the laser envelope is given Afz,t) b b propag

- 21e). indicating that th | " pulse since the pulse distorts.
_A.‘(O’t_. c), in . |cat|r1g that the pulse propagates with ve-~ 1 properly describe higher-order effects it is necessary to
locity ¢ without distortion.

. . . . solve Eq.(3) by keeping the order of approximation consis-
Equation(2) can be solved iteratively assuming that terms; ¢ Expanding the exponential terms in E8) to second
on the RHS get progressively smaller. However, to indicath)rder yields

where inconsistencies in the ordering of approximations can

arise we proceed with a spectral analysis and show how to o R
recover a consistent ordering. Equati@ is Fourier trans- A(z,t)=(1/\/27r)f dv A(O)[1+ikq zv
formed in time and the resulting differential equatiorziis ‘°°
solved for the transformed envglope. Inverting the trans- +(12)(i koz— K222) 2]
formed envelope yields the solution
Xexg —iv(t—2z/c)]. (6)
1 i A
A(z,t)= —f dvA(0,v) Equation(6) can be integrated to give
Vo |-
Xexd —iv(t—z/c)lexpik vz+ik,v°z/2), A(z,t) = 1—K125—%(i:<22— KEZZ)EZWL“‘
()
) X A(0t—2z/c). (7)
whereA(0,v) is the Fourier transform of the envelopezt
=0, andv is the transform variable. In Eq. (7) the first term on the RHS denotes the vacuum

It is assumed that the following inequalities hold: 1 solution, the second term represents lowest-order differential
>| Kk vz|>|Kk,v%2/2|, where v=1/T, z~L, and T is the  gain, while the third- and higher-order terms are small and
characteristic pulse duration. To correctly evaluate the intedenote higher-order effects. Equatidid) shows that the
gral in Eg. (3), the exponentials in the small quantities pulse propagates at the speed of light while undergoing dif-
should be expanded to an order of approximation consisterferential gain(distortion. The quantityx, can be negative in
with Eq. (2), otherwise unphysical solutions may result. Forthe presence of gain or absorption. In the case of gain, when
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. . Using Eq.(7), Eq.(9) can be integrated for an arbitrary pulse
dlffge;?:tlal shape fromt’=0 tot'=T to give

K vacuum ﬂ=exp1[—2 Im(ko)z][1—{Im(k,)z
standard ‘e (V=0 e(0) ° ?
approach \

[ A(z=L,t) |

—[2 Im(kq)z]?} w2I3T?]. (10)

The exponential factor in Eq10) represents the homoge-
neous gain of the medium while the higher-order terms in the
(front) t-z/c — (back) bracket represent dispersion effects.

FIG. 2. lllustrations of the pulse shape at the exit boundary,
comparing vacuum propagatigdashed curve pulse advancement
obtained by Eq(5) (light solid curve, and pulse distortion due to
differential gain given by Eq(7) (thick curve. In a recent articld10], titled Gain-assisted superluminal

light propagation researchers reported observing superlumi-
k1<0, the front portion of the pulse is amplified more thannal propagation of a laser pulse through an amplifying me-
the back. Figure 2 is an illustration comparing the type ofdium by a new mechanism that does not distort the pulse. In
pulse distortion characteristic of differential gair,&0) this experiment, a long laser pulse was passed through an
with the distortionless pulse advancement described by Ecamplifying medium consisting of a specially prepared cae-
(5). As shown in the following section, pulse distortion simi- sium gas cell of length. =6 cm, as depicted in Fig. 1. The
lar to that exhibited by the darker curve of Fig. 2 results fromlaser pulse of duratiom=3.7u sec was much longe.1
the exact numerical solution of the wave equation. km) than the gas cell, so that at any given instant only a

It is interesting to note that for a Gaussian pulse, the insmall portion of the pulse was inside the cell. By measuring
tegral in Eq.(3) can be evaluated exactly if the expansion ofthe pulse amplitude at the exit, it is claimed that both the
the refractive index is carried up t,, i.e., lowest-order front and the back edges of the pulse were shifted forward in
GVD. Taking the input laser pulse to have the foA(0,t) time by the same amount relative to a pulse that propagated
=ag exp(—t?/2T?), wherea, is the peak amplitude, the Fou- through vacuum. In contrast to earlier works that have inter-
rier transform isA(0,v) =a,T exp(— 12 T%2). For this pulse preted apparent superluminal propagation as a pulse reshap-
form, the integral in Eq(3) can be evaluated to giVié] ing effect[3,4], it is claimed in Ref[10] that superluminal

propagation is observed “while the shape of the pulse is
ag —[t—(1+cky)z/c]? preserved” and “the argument that the probe pulse is ad-
WGXF’[ T2y 79 |’ tS) ¥f;11nced by amplification of its front edge does not apply.”
is article generated a great deal of press attention around
where Re(+ix,ZT2)>0, i.e.,— Im(ky)Z/T2<1 is required for ~the world. . _ _
convergence of the integral. This analysis shows that the 1€ results of our analysis is used to interpret the experi-
pulse propagates with velocity, (even ifv is negative or ment of Ref.[10]. To proceed,' we consider the f.o'llowmg
greater tharc) and remains Gaussian but with a different stanqlard model for the refractive index of a multiline gain
amplitude and width. This result is specific to a Gaussiadnedium[11],
pulse, which does not have a well-defined beginning or end

III. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

A(z,t)=

2
[3,4]. Using Eq.(7), however, a Gaussian pulse does not n(w)=1+> (47TN2iq /n;)(p‘f'i pg'i), (11)
remain Gaussian, but becomes distorted according to [ 0 = QO+ 2wy
r 1 - 5 where the sum is over atomic levels, ang andp,; are the
A(z)=ag 1+ k1Zo— oz (inz— Kz NP =T?)+ - density matrix elements for the excited and ground states,
respectively. The quantitie®; and y; denote the resonant
X exp( — 72/2T?), frequency and line width of thih level. An inverted popu-
lation or gain medium is characterized by#Mg?/m)(p,
wherer=t—z/c. —pg)/40?>0. To model the experiment of RefL0], the

The energy gain/loss can also be calculated to all orderg|lowing near-resonance two-level approximation of Eq.
from the pulse envelope. The ratio of the input pulse energy11) is employed:

to the pulse energy within the medium is found to be given

by ~ An(w) Ml M2
. i} X ==+, =4y 12
=exg —2 Im(k zf A(z,t")|?dt’ _ -
£(0) H (ko)2] 7:>c| ()] whereM, ,>0 are related to the gain coefficients. The sus-

_ ceptibility in Eq. (12) represents a medium with two gain
f IAGOL)[2dt | . 9) lines of spectral widthy at resonance frequenciek;
' and f,. The gain spectrum foM;,=M=0.18 Hz, f,

X

—
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FIG. 3. Gain spectrunisolid curve obtained using the suscep- § 102
tibility in Eq. (9) for the parameterm =0.18 Hz,f;=3.5x10' X 1
Hz, f,=f,+2.7 MHz, andy=0.46 MHz. The dashed curve shows 2
) . i = 098
the spectrum associated with the pulse envelope of(Hg. with
T=3.7 usec. 0.96 ; i\
3 3.5 4 45 5

=3.5x10%Hz, f,=f,+2.7MHz and y=0.46 MHz, is Time (psec)
shown in Fig. 8a) (solid curve. For these parameters the
deviation of the refractive index from unityn(w) shown in
Fig. 3(b) closely approximates that in Fig. 3 of RgL0]. The
input laser pulse envelope is taken to have the form

FIG. 4. Dotted curves show the pulse envelope amplitude
|A(L,t)| atz=L obtained from Eq(7). Solid curves denote a pulse
that has traveled a distantghrough vacuum. The dashed curve in
panel(b) is the unphysical solution obtained from E§) showing
. superluminal propagation. Panély and(c) are expanded views of
A(z=0j)= o S|n2(7-rt/2T), 0<t<2.T (13) the front and peak of the pulse, respectively. The parameters for this
' 0, otherwise, figure are the same as in Fig. 2.
wherea, is the pulse amplitude ando/2m=(f;+f5)/21is  medium (dotted curves with the vacuum solutiofA(Ot
the carrier frequency. The spectrum as;ociqted with the input L/c)| (solid curve$. Panel(a) shows the entire pulse pro-
pulse is shown by the dashed curve in Fig. 3 and has nfie. Consistent with the experimental measurements, the
significant spectral components at the gain lines. leading edge is shifted forward in time relative to the

For the pal’ameters of RE[ﬂ.O] we find that the first-order vacuum solution by 62 nsec. Par(bl) shows three curves:
correction in Eq(7), i.e., the term proportional t&/dt, is of  the solid curve denotes the vacuum solution, the dotted curve
order k,L/T~—1.6xX10"? giving a negative group velocity shows the result obtained from E@), and the dashed curve
vg=—c/310. The second order correction is,L/T?°~  shows the result obtained from E¢f). The dotted curve
—10 3. Hence, the expansion performed to obtain &J.  shows that the front of the pulse propagates with velogity
is valid. The differential gain effect, in which the peak of the the propagation is not superluminal. The unphysical solution,
pulse is advanced, requires thag<0. Using Eq.(13) we  given by the dashed curve, shows the front of the pulse

find that, is approximately given by propagating at the superluminal group velocity. P&ogls
an expanded view near the peak of the pulse showing that the
CK1=—8 (f1+72) M (14) front is amplified more than the back. This analysis indicates
. (fo—fp* that differential gain occurred in the experiment of H&0]

) ) o and can account for the observed pulse advancement. Hence,
where it has been assumed tffat f, )/>y. Inthis case itis  the interpretation in Ref.10] that superluminal propagation

clear that a gain mediumM>0) is required fork, to be  occyrs without amplification of the leading edge of the pulse
negative. For this case, the gain coefficient is given bys incorrect.

—Im(ko)=8M1i(f,—f,)>>0. Note that in an absorptive me-
dium (M<0), «; can also be negative providefl—f j
<. In this case differential absorption occurs in which the
back of the pulse is absorbed more than the fiGM]. We have analyzed the propagation of a laser pulse in a
The validity of Eq.(7) was verified by numerically solv- dispersive gain/absorptive medium using an approach based
ing the envelope equation to all orders«n. Figure 4 com-  on the pulse envelope equation. Using this approach allows
pares the solution given by E¢7) at the exit of the gain analysis of higher-order dispersive effects and arbitrary input

IV. CONCLUSIONS
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pulse shapes. We find that to properly describe pulse propament observed in the experiment of R¢LO| and not a
gation, a consistent ordering of the approximations is necesiewly observed mechanism for superluminal propagation.
sary. We show that in a gain medium, the lowest-order effect
is that the pulse propagates with velocityand undergoes
differential gain, i.e., a distortion in which the front of the
pulse is amplified more than the back. Our analysis indicates This work was supported by the Office of Naval Research
that differential gain was responsible for the pulse advanceand the U.S. Department of Energy.
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