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Apparent superluminal propagation of a laser pulse in a dispersive medium
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~Received 13 December 2000; revised manuscript received 22 February 2001; published 19 July 2001!

The distortion of a laser pulse propagating in a dispersive gain/absorptive medium is analyzed. The rela-
tionship between the distortion of the pulse and superluminal propagation is discussed. We present an analyti-
cal approach based on the laser envelope equation that is readily applicable to arbitrary input pulse shapes. This
analysis is used to interpret recent experiments that claim to have observed distortionless superluminal laser
pulse propagation.
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I. INTRODUCTION

It is well known that in regions of anomalous dispersi
the group velocity of an electromagnetic pulse can be ab
mal, i.e., greater thanc ~the speed of light in vacuum! or
negative@1,2#. While it has been claimed that group veloci
‘‘is just not a useful concept’’ in regions of strong anomalo
dispersion@2#, others have shown that for a Gaussian pu
the group velocity represents the velocity of the peak of
pulse even when it is abnormal@3–5#. This apparent super
luminal propagation results from a pulse reshaping effect
which a dispersive medium preferentially amplifies the fro
or absorbs the back of the pulse. This effect has been
scribed theoretically using a Fourier transform method.
analytical tractability a Gaussian pulse was used and the
fractive index expanded to keep only the lowest-order gro
velocity dispersion~GVD! term @3–5#.

The analysis presented here is based on an envelope e
tion that describes the propagation of arbitrary pulse sha
and can in principle include dispersive effects analytically
all orders@6#. For a pulse with a well-defined leading edg
we show that the lowest-order effect in a gain medium is t
the pulse propagates with velocityc and undergoes a distor
tion in which the front of the pulse is amplified more than t
back, i.e.,differential gain. This leads to apparent superlum
nal pulse propagation in which the peak of the pulse trav
faster thanc. However, the velocity of the leading edge
the pulse does not exceedc. A related effect can also tak
place in an absorptive medium.

II. ANALYTICAL MODEL

The following analysis considers a laser pulse propag
ing through a general dispersive medium as illustrated in F
1. The laser electric fieldE is described by the wave equa
tion,

~]2/]z22c22]2/]t2!E54pc22]2P/]t2.

The polarization fieldP is related to the electric field by
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P~z,t !5~2p!21/2È0

dt x~t!E~z,t2t!,

wherex is the susceptibility. Defining the Fourier transfor
of a quantityQ(z,t) as

Q̂~z,v!5~2p!21/2E
2`

`

Q~z,t !exp~ ivt !dt,

the Fourier transforms of the polarization and the elec
field are related byP̂(z,v)5x̂(v)Ê(z,v). The medium is
characterized by a frequency-dependent complex refrac
indexn(v)5A114px̂(v). We assume that the deviation o
the refractive index from unity, i.e.,Dn(v)5n(v)21, is
small and neglect reflections of the laser pulse from the m
dium boundaries atz50 andz5L. To determine the evolu-
tion of the pulse envelope we represent the laser electric fi
as E(z,t)5 1

2 A(z,t)exp@i(k0z2v0t)#1c.c., whereA(z,t) is
the slowly varying, complex pulse envelope,k0(v0)
5v0n(v0)/c is the complex wave number,v0 is the carrier
frequency, and c.c. denotes the complex conjugate. The
is polarized in the transverse direction and propagates in
z direction. Sincek0 is complex, the factor exp@2Im(k0)z#
represents an overall amplification/absorption of the puls
frequencyv0 and does not cause pulse distortion. The act
laser pulse amplitude isuA(z,t)uexp@2Im(k0)z#.

An envelope equation is obtained by substituting the r
resentation for the laser electric field into the wave equat
and performing a spectral analysis@6–8# that involves ex-
panding the refractive index about the carrier frequencyv0 .

-

e- FIG. 1. Schematic showing a long laser pulse entering a g
medium.
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The envelope equation describing the evolution of the la
pulse, including dispersive effects to all orders, is given

S ]

]z
1

1

c

]

]t DA~z,t !

52F]~b2v/c!

]v G
0

]

]t
A~z,t !

1
i

2k0
H ]2

]z2 1 (
m51

`
i m

m! F]mb2

]vm G
0

]m

]tmJ A~z,t !,

~1!

where b(v)5vn(v)/c is the frequency-dependent wav
number,@ #0 denotes that the quantity in brackets is to
evaluated atv5v0 , and the laser pulse envelope at the inp
to the amplifying medium,A(z50,t), is assumed given. I
the spectral width of the pulse is sufficiently narrow, it
valid to limit the analysis to terms of order]2/]t2, i.e.,
lowest-order GVD effects. With this approximation, togeth
with neglecting the small term proportional to]2/]z2, Eq.
~1! reduces to

S ]

]z
1

1

c

]

]t DA~z,t !52S k1

]

]t
1

i

2
k2

]2

]t2 1¯ DA~z,t !,

~2!

where k l5@] lk(v)/]v l #0 , l 51,2, . . . , and k(v)
5vDn(v)/c. This approximation, which requires both
sufficiently short interaction length and long pulse duratio
is sufficient for the present purpose. For pulse propagatio
vacuum,Dn(v)50 so that the right-hand side~RHS! of Eq.
~2! vanishes and the laser envelope is given byA(z,t)
5A(0,t2z/c), indicating that the pulse propagates with v
locity c without distortion.

Equation~2! can be solved iteratively assuming that term
on the RHS get progressively smaller. However, to indic
where inconsistencies in the ordering of approximations
arise we proceed with a spectral analysis and show how
recover a consistent ordering. Equation~2! is Fourier trans-
formed in time and the resulting differential equation inz is
solved for the transformed envelope. Inverting the tra
formed envelope yields the solution

A~z,t !5
1

A2p
E

2`

`

dn Â~0,n!

3exp@2 in~ t2z/c!#exp~ ik1nz1 ik2n2z/2!,

~3!

whereÂ(0,n) is the Fourier transform of the envelope atz
50, andn is the transform variable.

It is assumed that the following inequalities hold:
@uk1nzu@uk2n2z/2u, where n'1/T, z'L, and T is the
characteristic pulse duration. To correctly evaluate the in
gral in Eq. ~3!, the exponentials in the small quantitie
should be expanded to an order of approximation consis
with Eq. ~2!, otherwise unphysical solutions may result. F
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example, if the lowest-order GVD termk2n2z/2 is neglected
in Eq. ~3!, the laser envelope is given by

A~z,t !5
1

A2p
E

2`

`

dn Â~0,n!exp@2 in~ t2z/c!#exp~ ik1nz!.

~4!

Equation~4! can be integrated exactly to give

A~z,t !5A~0,t2z/vg!, ~5!

where the quantityvg5@](vn/c)/]v#215c/(11ck1) de-
fines the group velocity of the pulse. The exact solutio
given by Eq.~5!, to the approximate envelope equation c
clearly lead to unphysical results since it implies that, to
lowest order of approximation, the entire pulse propaga
undistorted with velocityvg . This interpretation is due to
implicitly retaining terms beyond the order of the approx
mation through the exponential factor. For example, negle
ing k2 terms in the exponent of Eq.~4! is equivalent to
keeping terms proportional to (k1nz)2 while neglecting
terms proportional tok2n2z that are of the same order.

In a dispersive gain/absorptive medium,vg can be abnor-
mal. For example, if21,ck1,0, the pulse velocity ex-
ceedsc. A negative group velocity implies superlumina
propagation if one considers the pulse delay time@9,10#. The
delay time,DT5L/vg2L/c, is defined as the difference i
the transit times of an arbitrary point on the pulse in t
dispersive gain/absorptive medium and in vacuum. A ne
tive delay time implies superluminal propagation. While it
physically possible for some points on the pulse to ha
negative delay times, e.g., the peak of the pulse, this sho
not be interpreted as superluminal propagation of theentire
pulse since the pulse distorts.

To properly describe higher-order effects it is necessar
solve Eq.~3! by keeping the order of approximation consi
tent. Expanding the exponential terms in Eq.~3! to second
order yields

A~z,t !5~1/A2p!E
2`

`

dn Â~0,n!@11 ik1zn

1~1/2!~ ik2z2k1
2z2!n2#

3exp@2 in~ t2z/c!#. ~6!

Equation~6! can be integrated to give

A~z,t !5S 12k1z
]

]t
2 1

2 ~ ik2z2k1
2z2!

]2

]t2 1¯ D
3A~0,t2z/c!. ~7!

In Eq. ~7! the first term on the RHS denotes the vacuu
solution, the second term represents lowest-order differen
gain, while the third- and higher-order terms are small a
denote higher-order effects. Equation~7! shows that the
pulse propagates at the speed of light while undergoing
ferential gain~distortion!. The quantityk1 can be negative in
the presence of gain or absorption. In the case of gain, w
4-2
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APPARENT SUPERLUMINAL PROPAGATION OF A . . . PHYSICAL REVIEW E64 026504
k1,0, the front portion of the pulse is amplified more th
the back. Figure 2 is an illustration comparing the type
pulse distortion characteristic of differential gain (k1,0)
with the distortionless pulse advancement described by
~5!. As shown in the following section, pulse distortion sim
lar to that exhibited by the darker curve of Fig. 2 results fro
the exact numerical solution of the wave equation.

It is interesting to note that for a Gaussian pulse, the
tegral in Eq.~3! can be evaluated exactly if the expansion
the refractive index is carried up tok2 , i.e., lowest-order
GVD. Taking the input laser pulse to have the formA(0,t)
5a0 exp(2t2/2T2), wherea0 is the peak amplitude, the Fou
rier transform isÂ(0,n)5a0T exp(2n2 T2/2). For this pulse
form, the integral in Eq.~3! can be evaluated to give@4#

A~z,t !5
a0

A12 ik2z/T2
expH 2@ t2~11ck1!z/c#2

2T2~12 ik2z/T2! J , ~8!

where Re(12ik2z/T
2).0, i.e.,2Im(k2)z/T

2,1 is required for
convergence of the integral. This analysis shows that
pulse propagates with velocityvg ~even if vg is negative or
greater thanc! and remains Gaussian but with a differe
amplitude and width. This result is specific to a Gauss
pulse, which does not have a well-defined beginning or
@3,4#. Using Eq. ~7!, however, a Gaussian pulse does n
remain Gaussian, but becomes distorted according to

A~z,t !5a0F11k1z
t

T22
1

2T4 ~ ik2z2k1
2z2!~t22T2!1¯G

3exp~2t2/2T2!,

wheret5t2z/c.
The energy gain/loss can also be calculated to all ord

from the pulse envelope. The ratio of the input pulse ene
to the pulse energy within the medium is found to be giv
by

«~z!

«~0!
5exp@22 Im~k0!z#E

2`

`

uA~z,t8!u2 dt8

3S E
2`

`

uA~0,t8!u2dt8D 21

. ~9!

FIG. 2. Illustrations of the pulse shape at the exit bounda
comparing vacuum propagation~dashed curve!, pulse advancemen
obtained by Eq.~5! ~light solid curve!, and pulse distortion due to
differential gain given by Eq.~7! ~thick curve!.
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Using Eq.~7!, Eq.~9! can be integrated for an arbitrary puls
shape fromt850 to t85T to give

«~z!

«~0!
5exp@22 Im~k0!z#†12$Im~k2!z

2@2 Im~k1!z#2%p2/3T2
‡. ~10!

The exponential factor in Eq.~10! represents the homoge
neous gain of the medium while the higher-order terms in
bracket represent dispersion effects.

III. NUMERICAL RESULTS AND COMPARISON
WITH EXPERIMENTS

In a recent article@10#, titled Gain-assisted superlumina
light propagation, researchers reported observing superlum
nal propagation of a laser pulse through an amplifying m
dium by a new mechanism that does not distort the pulse
this experiment, a long laser pulse was passed through
amplifying medium consisting of a specially prepared ca
sium gas cell of lengthL56 cm, as depicted in Fig. 1. Th
laser pulse of durationT53.7m sec was much longer~1.1
km! than the gas cell, so that at any given instant only
small portion of the pulse was inside the cell. By measur
the pulse amplitude at the exit, it is claimed that both t
front and the back edges of the pulse were shifted forwar
time by the same amount relative to a pulse that propag
through vacuum. In contrast to earlier works that have int
preted apparent superluminal propagation as a pulse res
ing effect @3,4#, it is claimed in Ref.@10# that superluminal
propagation is observed ‘‘while the shape of the pulse
preserved’’ and ‘‘the argument that the probe pulse is
vanced by amplification of its front edge does not apply
This article generated a great deal of press attention aro
the world.

The results of our analysis is used to interpret the exp
ment of Ref.@10#. To proceed, we consider the followin
standard model for the refractive index of a multiline ga
medium@11#,

n2~v!511(
i

~4pNiq
2/m!~ru,i2rg,i !

v22V i
212ivg i

, ~11!

where the sum is over atomic levels, andru,i andrg,i are the
density matrix elements for the excited and ground sta
respectively. The quantitiesV i and g i denote the resonan
frequency and line width of thei th level. An inverted popu-
lation or gain medium is characterized by (4pNq2/m)(ru
2rg)/4V2.0. To model the experiment of Ref.@10#, the
following near-resonance two-level approximation of E
~11! is employed:

x̂~ f !>
Dn~v!

2p
5

M1

f 2 f 11 ig
1

M2

f 2 f 21 ig
, ~12!

whereM1,2.0 are related to the gain coefficients. The su
ceptibility in Eq. ~12! represents a medium with two gai
lines of spectral widthg at resonance frequenciesf 1
and f 2 . The gain spectrum forM1,25M50.18 Hz, f 1

,
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53.531014Hz, f 25 f 112.7 MHz and g50.46 MHz, is
shown in Fig. 3~a! ~solid curve!. For these parameters th
deviation of the refractive index from unityDn(v) shown in
Fig. 3~b! closely approximates that in Fig. 3 of Ref.@10#. The
input laser pulse envelope is taken to have the form

A~z50,t !5H a0 sin2~pt/2T!, 0,t,2T

0, otherwise,
~13!

wherea0 is the pulse amplitude andv0/2p5( f 11 f 2)/2 is
the carrier frequency. The spectrum associated with the in
pulse is shown by the dashed curve in Fig. 3 and has
significant spectral components at the gain lines.

For the parameters of Ref.@10# we find that the first-order
correction in Eq.~7!, i.e., the term proportional to]/]t, is of
orderk1L/T'21.631022 giving a negative group velocity
ng52c/310. The second order correction isk2L/T2'
21023i . Hence, the expansion performed to obtain Eq.~7!
is valid. The differential gain effect, in which the peak of th
pulse is advanced, requires thatk1,0. Using Eq.~13! we
find thatk1 is approximately given by

ck1>28p
~ f 11 f 2!

~ f 22 f 1!2 M , ~14!

where it has been assumed thatu f 2 f 1,2u@g. In this case it is
clear that a gain medium (M.0) is required fork1 to be
negative. For this case, the gain coefficient is given
2Im(k0)58Mg/(f22f1)

2.0. Note that in an absorptive me
dium (M,0), k1 can also be negative providedu f 2 f 1,2u
!g. In this case differential absorption occurs in which t
back of the pulse is absorbed more than the front@3,4#.

The validity of Eq.~7! was verified by numerically solv
ing the envelope equation to all orders ink l . Figure 4 com-
pares the solution given by Eq.~7! at the exit of the gain

FIG. 3. Gain spectrum~solid curve! obtained using the suscep
tibility in Eq. ~9! for the parametersM50.18 Hz, f 153.531014

Hz, f 25 f 112.7 MHz, andg50.46 MHz. The dashed curve show
the spectrum associated with the pulse envelope of Eq.~10! with
T53.7 msec.
02650
ut
o

y

medium ~dotted curves! with the vacuum solutionuA(0,t
2L/c)u ~solid curves!. Panel~a! shows the entire pulse pro
file. Consistent with the experimental measurements,
leading edge is shifted forward in time relative to th
vacuum solution by 62 nsec. Panel~b! shows three curves
the solid curve denotes the vacuum solution, the dotted cu
shows the result obtained from Eq.~7!, and the dashed curv
shows the result obtained from Eq.~5!. The dotted curve
shows that the front of the pulse propagates with velocityc;
the propagation is not superluminal. The unphysical soluti
given by the dashed curve, shows the front of the pu
propagating at the superluminal group velocity. Panel~c! is
an expanded view near the peak of the pulse showing tha
front is amplified more than the back. This analysis indica
that differential gain occurred in the experiment of Ref.@10#
and can account for the observed pulse advancement. He
the interpretation in Ref.@10# that superluminal propagatio
occurs without amplification of the leading edge of the pu
is incorrect.

IV. CONCLUSIONS

We have analyzed the propagation of a laser pulse
dispersive gain/absorptive medium using an approach ba
on the pulse envelope equation. Using this approach all
analysis of higher-order dispersive effects and arbitrary in

FIG. 4. Dotted curves show the pulse envelope amplitu
uA(L,t)u at z5L obtained from Eq.~7!. Solid curves denote a puls
that has traveled a distanceL through vacuum. The dashed curve
panel~b! is the unphysical solution obtained from Eq.~5! showing
superluminal propagation. Panels~b! and~c! are expanded views o
the front and peak of the pulse, respectively. The parameters for
figure are the same as in Fig. 2.
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pulse shapes. We find that to properly describe pulse pro
gation, a consistent ordering of the approximations is nec
sary. We show that in a gain medium, the lowest-order ef
is that the pulse propagates with velocityc and undergoes
differential gain, i.e., a distortion in which the front of th
pulse is amplified more than the back. Our analysis indica
that differential gain was responsible for the pulse advan
-
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ment observed in the experiment of Ref.@10# and not a
newly observed mechanism for superluminal propagation
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